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Abstract

Aiming at privacy preservation, Federated Learning (FL) is an emerging machine learning approach enabling model training on
decentralized devices or data sources. The learning mechanism of FL relies on aggregating parameter updates from individual clients.
However, this process may pose a potential security risk due to the presence of malicious devices. Existing solutions are either costly
due to the use of compute-intensive technology, or restrictive for reasons of strong assumptions such as the prior knowledge of the
number of attackers and how they attack. Few methods consider both privacy constraints and uncertain attack scenarios. In this
paper, we propose a robust FL approach based on the credibility management scheme, called Fed-Credit. Unlike previous studies,
our approach does not require prior knowledge of the nodes and the data distribution. It maintains and employs a credibility set,
which weighs the historical clients’ contributions based on the similarity between the local models and global model, to adjust
the global model update. The subtlety of Fed-Credit is that the time decay and attitudinal value factor are incorporated into the
dynamic adjustment of the reputation weights and it boasts a computational complexity of𝑂 (𝑛) (𝑛 is the number of the clients). We
conducted extensive experiments on the MNIST and CIFAR-10 datasets under 5 types of attacks. The results exhibit superior accuracy
and resilience against adversarial attacks, all while maintaining comparatively low computational complexity. Among these, on the
Non-IID CIFAR-10 dataset, our algorithm exhibited performance enhancements of 19.5% and 14.5%, respectively, in comparison to
the state-of-the-art algorithm when dealing with two types of data poisoning attacks.

1 INTRODUCTION

The constantly increasing amount of data and the intricacy of machine learning models have given rise to an aug-
mented requirement for computational resources. The current machine learning paradigm necessitates data collection
in a central server, which may be unfeasible or undesirable from the perspectives of privacy, security, regulation, or
economics. Recently, federated learning (FL) [1] and other decentralized machine learning methods [2, 3] have been
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proposed as potential solutions to address the above issues. In a federated learning framework, the server broadcasts
the shared global model to clients, clients then perform training with their private data sets and upload the updated
models to the server. Then the server updates the global model by aggregating the locally updated models and begins
the next round of training. FedAvg [4], which takes the average of local parameters as global parameters, is a typical
aggregation algorithm.

However, due to its special framework, the typical FL algorithm faces some serious security threats to the model if
some clients are malicious. Byzantine failure is one most important security threats, where some clients are malicious
and take measures to attack the global model. For example, malicious clients could upload modified parameters while
genuine clients upload local parameters. Then, the global model performance would be degraded even though only
one single malicious client in FedAvg algorithm [5]. The untargeted attack [6, 7] is a model poisoning attacks, where
malicious clients directly manipulate their local updates to compromise the global model performance. Shafah et al. [8]
introduced a form of clean-label poisoning attack, which adds carefully crafted perturbations to a subset of the training
data, to contaminate an image classification model. This contamination aims to disrupt the model training process,
leading to training failure. [9–13] conducted investigations into a backdoor attack strategy named label flipping. In
this attack, the attacker’s model update is engineered to deliberately induce the local model to learn an incorrect
mapping for a small subset of the data. As an example, during training on MNIST, the attackers may aim to make the
model to classify all images originally labeled “7” as “1”, thereby obstructing the convergence of the global model.

To address the above issue, previous research has proposed some robust aggregation rules to defend against such
attacks. Krum and Multi-Krum [14], Median and Trimmed-mean [15], GeoMed [16], Bulyan [17], MAB-RFL [18] aim
to drop potential malicious updates by comparing local updates. While [19–22] distinguish malicious clients by com-
paring the local updates and server update, which is trained using clean data stored on the server. Hsieh et al. [23]
discovered that the Non-IID (not identically and independently distributed) distribution can notably stymie model
training convergence in various distributed algorithms, including FedAvg, yet previous work ignores the effects of
such heterogeneous data distributions. In the real-world FL system implementation, we neither know how the at-
tacker is attacking, nor how many attackers. And for privacy reasons, it could be difficult to curate a global dataset
sampled from the underlying data distribution. An urgent need thus arises to propose an aggregation rule that does
not require such prior knowledge and can still effectively defend against multiple attacks.

In this paper, we propose a new Robust FL method called Fed-Credit. The server maintains a credibility set of clients
based on cosine similarity, which makes the server consider the historical contribution of clients when assigning
weights. We performed a comprehensive series of experiments on the MNIST and CIFAR-10 datasets, aiming to com-
pare the performance of our Fed-Credit with other existing algorithms. Our assessment encompassed multiple attack
types, varying fractions of malicious clients and dataset distributions. The empirical findings unequivocally showcase
that our algorithm not only maintains high test accuracies but also demonstrates exceptional robustness against ad-
versarial attacks. Importantly, these achievements are coupled with the benefit of maintaining a comparatively low
computational complexity when contrasted with alternative algorithms.

The main contributions of this work can be summarized as follows:

• Fed-Credit Scheme: In general, this paper proposes a new framework for robust federated learning based on
credibility values called Fed-Credit to address the challenges faced above. It maintains and employs a credibil-
ity set, which weighs the historical clients’ contributions based on the similarity between the local models and
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global model, to adjust the global model update.The elegance of Fed-Credit lies in its inherent ability to dynam-
ically adjust the weights of credibility values, all while maintaining a commendable computational complexity
of 𝑂 (𝑛). Notably, this operation is achieved without requiring the server to possess a training dataset.

• Credibility Management for FL: In this work, we intricately devised a management approach for credibility
values within Fed-Credit. This is achieved through initialization and during the training process by comparing
the similarity between the weights of global and local models and incorporating a temporal decay function to
update the reputation values of each client. We designed a method that is characterized by its low computa-
tional complexity, while also being capable of efficiently training a global model without the necessity of prior
knowledge regarding the credibility of individual clients.

• Detailed Evaluation: We conducted extensive comparative experiments between Fed-Credit and various al-
gorithms proposed in prior research. These experiments encompassed diverse datasets, disparate distributions,
varying attack methods, and differing numbers of attackers. The results of these experiments demonstrate
that our algorithm attains or surpasses the state-of-the-art algorithms in almost all scenarios. Notably, on the
Non-IID CIFAR-10 dataset, our algorithm exhibited performance enhancements of 19.5% and 14.5%, respec-
tively, in comparison to the state-of-the-art algorithm when dealing with two types of data poisoning attacks
as evaluated in our experiments involving four attackers. We also tracked the dynamic changes in credibility
values among different clients during the training process. The outcomes indicate that Fed-Credit effectively
distinguishes attackers within the client population.

The remainder of this paper is structured as follows.The systemmodel, threatmodel and defensemodel are presented
in Section 2, while Section 3 provides details of our proposed solution. Experimental results are showcased in Section
4. The related work and motivation are introduced in Section 5. Finally, Section 6 concludes the paper.

2 FL SYSTEM

In this section, we present the system model, threat model, and defense model of the Federated Learning (FL) system
considered in this work. Figure 1 provides an overview of the system.

2.1 System Model

We consider a Federated Learning (FL) system that consists of multiple clients and one central server for collaborative
model training.The server forms a global model by aggregating model parameters uploaded by clients. However, some
of these clients may be compromised and controlled by malicious attackers, turning them into adversarial clients
Figure 1. Therefore, our objective is to find an effective method to aggregate the model parameters provided by both
the potentially adversarial and the regular clients, while maintaining the efficacy of the global model. Further details
are provided below.

Client: In an FL system, the clients refer to the individual participants or devices that contribute to the collaborative
model training. Each client has its own local dataset and model, which it uses to train the model. Before each training
session, clients will receive the latest global model from the server. They then use their own local datasets to train
respective models based on this global model. Finally, the trained models will be uploaded to the server.

Server: The server in this system maintains the credibility values of each client and the global model. At the start
of each training round, the server distributes the current global model to all clients. Once the clients complete the
predetermined number of training epochs, the server collects the models trained by each client and aggregates them
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Local Dataset: Data for the Client to Train Loacl Model

ML Model: Local or Gobal Machine Learning Model 

Client 1 Client 2 Client 3 Client 4 Client 5

Server

Reputation: the Reputation Values of Each Client
Data Poisoning Attack

Model Poisoning Attack

Fig. 1. FL system framework

into a new global model using a credibility value-based algorithm. Subsequently, the server updates the credibility
values of different clients based on the new global model and the local models submitted by the clients. Finally, the
server sends the updated global model back to the clients for the subsequent training round. This process repeats until
reaching the desired accuracy or the maximum number of training rounds.

2.2 Threat Model

In this section, we present a comprehensive threat model for poisoning attacks in Federated Learning (FL) system
(Figure 1). This model encompasses various aspects such as the objectives of poisoning attacks, the types of poisoning
attacks, the knowledge possessed by the poisoning attacker, and the assumptions made for poisoning attacks.

Objective of Poisoning Attacker: The attacker typically compromises the learning system to cause failure on
specific inputs intentionally chosen by the attacker. This process can even construct backdoors through which they
can control the output of a deployed model in the future. Similar to numerous prior studies on poisoning attacks [24–
26], we assume that the primary objective of poisoning attacker in FL system is to deliberately manipulate the local
training process and compromise the aggregation process of the global model.The aim is to cause a significant increase
in error rates for the testing data, thereby undermining the integrity and reliability of the model.

Types of Poisoning Attacks: Poisoning attacks in FL systems can be categorized based on their attack methods,
mainly including data poisoning attacks [27] andmodel poisoning attacks [25]. Data poisoning attacks involve injecting
poisoned data samples into the training dataset, such as label-flipping attacks [27]. In this paper, we apply label-flipping
attacks using the pairwise [11] and symmetric [10] matrix methods. Model poisoning attacks aim to target the model
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parameters directly, manipulating the aggregation process by sending error or noisy parameters. Model poisoning
attacks [24, 28, 29] aim to thwart the FL process by uploading to the server either constant model weights, or weights
sampled from a certain distribution, or parameters that are opposite to the training results.

Poisoning Attacker’s Knowledge: As poisoning attackers are part of the FL system, they possess a certain level
of knowledge about the FL system and its components. This knowledge includes an understanding of the training
data distribution, the model architecture, the learning algorithm, and the global model parameters that are updated
during the iterative process in communication rounds. However, conducting data andmodel poisoning attacks does not
necessarily depend on this knowledge but rather on the attackers’ ability to collaborate with each other. For instance,
to execute a model poisoning attack, several attackers may need to provide identical constants or distributions while
returning locally trained parameters.

Poisoning Attacks Assumptions: Poisoning attacks in FL system are built upon certain assumptions. (1)Multiple
poisoning attackers can assume the ability to collaborate. This collaboration can involve the use of different strategies
by different attackers, such as pairwise and symmetric matrix label flipping attacks, or utilize the samemodel poisoning
attacks. (2) It is assumed that the number of malicious clients does not exceed half of the total [24]. (3)Wefinally assume
that the communication between the server and client is reliable, which means that in our paper, we do not consider
noise and errors caused during the transmission process.

2.3 Defense Model

Defender’s knowledge: The defense is performed on the server. In practical applications, the server has several
limitations. (1) The server does not possess any training data on the server side. (2) The server cannot access the data
stored in clients. (3) The server does not know the number of malicious clients, and their attack strategy choices. (4)
The server only has access to local model updates.

In this work, we consider the general FL framework, which consists of a server and 𝑛 clients, and 𝑓 (where 𝑓 < 𝑛
2 )

of them are malicious clients. The server has 𝑅 synchronous rounds and clients cluster 𝐶 has 𝐸 local epochs in each
round. During each round, the server broadcasts global parameters 𝑔 to the clients. The clients subsequently train the
model using a mini-batch size of 𝐵 with their respective local datasets for 𝐸 epochs to obtain local updated model
𝑔𝑖 . Among the 𝑛 clients, 𝑓 malicious clients perform attacks by poisoning datasets (data poisoning) or manipulating
local models (model poisoning). The server collects local updates and computes a new global model by applying an
aggregation rule. Detailed definitions of all symbols are given in Table 1.

3 FED-CREDIT

FL algorithms, for instance, FedAvg, typically aggregates the local model updates from all clients by averaging the local
model updates to update the global model. The weight of each client is usually set to be equal to the size of its local
dataset. In the presence of malicious clients, the global model is vulnerable to attacks; and the server faces challenges
in accurately determining whether the clients’ data distributions exhibit natural heterogeneity or are intentionally
manipulated. This difficulty arises from the server’s inability to sample directly from the clients’ datasets. It is thus
preferred to evaluate the credibility of clients as each client’s weight, thus reducing the weights of malicious clients to
protect global model training.

To address this issue, we propose Fed-Credit, a novel defense framework based on credibility management. It aims
to resist various types of attacks without the knowledge of the number of malicious clients. The server considers the
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Table 1. Table of Notations.

Parameter Description
𝛼1, 𝛼2, 𝛽 Hyperparameters of Fed-Credit

𝛼 The equilibrium factor
𝑛 Number of clients
𝑓 Number of malicious clients (0 ≤ 𝑓 < 𝑛/2)
𝜂 Learning rate
𝐵 Batch Size
𝐶𝑖 The 𝑖th client (1 ≤ 𝑖 ≤ 𝑛)
𝜽 The global model
𝜽𝑖 The local model of 𝐶𝑖
𝝉 The credibility set of clients
𝜏𝑖 The credibility of 𝐶𝑖
𝑆𝑖 The credibility score between local model of 𝐶𝑖 and the global model
𝑤𝑖 The weight of 𝐶𝑖
𝑅 Number of global training rounds
𝐸 Number of local training epochs

cosine similarity of each client’s local update with the global update and the credibility value of the previous rounds
to update the client’s credibility. Our approach envisions the server dynamically managing a set of credibility values
for each client. These values assess historical contributions by considering the similarity between local models and the
global model. Incorporating temporal decay and credibility values, the server judiciously adjusts the weights assigned
to each client’s local updates for global model aggregation. The overall algorithm of our proposed Fed-Credit method
can be found in Algorithm 1, and it is summarized in the following five steps:

• Step 1:The server initializes the global model 𝜽 and assigns an initial credibility value of 1 to each client. Next,
the server iterates Steps 2 to 5 until either the global model 𝜽 achieves the desired performance or reaches the
maximum allowable number of global training epochs 𝑅.

• Step 2: The server sends the global model 𝜽 to all clients.
• Step 3: The clients 𝐶𝑖 independently train models using their own local datasets. There is no communication

between benign clients, ensuring that they cannot exchange the datasets or trained models with other clients.
At the end of the training process, the clients upload the model parameters 𝜽𝑖 to the server.
• Step 4: The server incorporates an equilibrium factor 𝛼 to dynamically regulate the impact of the credibility

value 𝜏𝑖 on the client weights 𝑤𝑖 . 𝛼 is obtained in Algorithm 3. As training progresses, the influence of the
credibility value 𝜏𝑖 on weights 𝑤𝑖 gradually increases. The server then aggregates the local updates using the
client weights𝑤𝑖 .

• Step 5: The server assesses the cosine similarity between individual layers of each local model 𝜽𝑖 and the
global models to obtain the credibility score 𝑆𝑖 of 𝑙𝑜𝑐𝑎𝑙𝑚𝑜𝑑𝑒𝑙 . Fed-Credit takes the decaying effect over time
into consideration, thus an exponential decay factor is utilized to average historical credibility values. Finally,
the server normalizes the credibility values of each client.
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Server

② Initialize the reputation value of clients to 1

① Initialize the global model from the pre-train ones 

③ The server broadcasts

    global model to clients

④ Clients train models 

     with local datasets

Client 2

⑤ The server aggregates local

     updates to update global model

Compute Weight

⑤

⑥ The server updates the

     reputation value of each client

Compute Reputation
⑥

Client 1

Local Dataset: Data for the Client to Train Loacl Model

ML Model: Local or Gobal Machine Learning Model 

Reputation: the Reputation Values of Each Client
①~②: Carry out at the beginning of training

③~⑥: Carry out each round of training

④ Clients train models 

     with local datasets

Fig. 2. A high-level overview of Fed-Credit.

3.1 Credibility Management Mechanism

In a FL system, users with higher credibility and more stable network connections contribute more to the training
process. On the FL system initialization, it assigns each client a credibility value 𝜏𝑖 = 1. After each round of training,
it aggregates the client model parameters 𝜽𝑖 into the global model, where the aggregation weight 𝑤𝑖 of each client
is determined by its credibility value 𝜏𝑖 . We then evaluate the credibility score 𝑆𝑖 , which is computed by averaging
the cosine similarity of each layer between local and global models. The algorithm for credibility value assignment is
outlined in Algorithm 2.

The credibility value 𝜏𝑖 is then updated with the credibility score 𝑆𝑖 using an exponential decay function to take
the decaying effect over time into consideration. Thus an decay factor 𝛽 is utilized to average historical credibility
values. A larger 𝛽 value signifies that the past credibility value holds lesser significance, thereby highlighting the
augmented significance of the current credibility score 𝑆𝑖 . Following this, to mitigate the attacks frommalicious clients,
we normalize credibility values by subtracting the minimum credibility value from all values:

𝝉 = 𝝉 −min(𝝉 ) (1)

Note that in Algorithm 2, the bias parameters in each layer are also used to evaluate the 𝑆𝑖 of the model.
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Algorithm 1 The Fed-Credit algorithm.
Input: Clients with local training datasets, {𝐶1,𝐶2,𝐶3, . . . ,𝐶𝑛}; learning rate 𝜂; batch size 𝐵; number of local training

iterations 𝐸; number of communications 𝑅; hyperparameters 𝛼1, 𝛼2, 𝛽 .
Output: Global model 𝜽 .
1: // Step 1: The server initiates the global model and the credibility values.
2: Initialize 𝜽
3: 𝝉 ← 1. ⊲ 𝝉 = [𝜏1, 𝜏2, 𝜏3, . . . , 𝜏𝑛] contains the credibility value of clients.
4: for 𝑟 ∈ 𝑅 do
5: // Step 2: The server broadcasts global model 𝜽 .
6: The server sends global model 𝒈 to all clients {𝐶1,𝐶2,𝐶3, . . . ,𝐶𝑛}.
7: // Step 3: Clients train models with local datasets.
8: for 𝑖 = 1 to 𝑛 do ⊲ do in parallel
9: 𝒈𝒊 ← getLocalModel(𝜽 ,𝐶𝑖 , 𝜂, 𝐸, 𝐵)
10: Return 𝒈𝒊 to server.
11: end for
12: // Step 4: The server aggregates local updates to update the global model.
13: for 𝑖 = 1 to 𝑛 do
14: 𝑤𝑖 ← getWeight(𝑅, 𝜏𝑖 , 𝛼1, 𝛼2) ⊲ 𝜏𝑖 is the credibility value of the 𝑖th client
15: end for
16: 𝜽 ← ∑𝑛

𝑖=1𝑤𝑖 · 𝜽𝑖 ⊲ Combine local gradients
17: // Step 5: The server updates the credibility value of each client.
18: for 𝑖 = 1 to 𝑛 do ⊲ do in parallel
19: 𝜏𝑖 ← getCredibility(𝜏𝑖 , 𝜽𝑖 , 𝜽 , 𝛽)
20: end for
21: 𝝉 ← 𝝉 −𝑚𝑖𝑛(𝝉 )
22: end for
23: Return the global model 𝜽

Algorithm 2 The getCredibility function.
Input: Credibility value 𝜏𝑖 ; local model 𝜽𝑖 ; global model 𝜽 , hyperparameters 𝛽
Output: Updated credibility value 𝜏𝑖
1: // Compute the credibility score 𝑆𝑖 .
2: 𝑆𝑖 ← 0 ⊲ Initialize the credibility score
3: for 𝑙𝑎𝑦𝑒𝑟À in 𝜽 do
4: 𝑆𝑖+ = ⟨𝜽𝑖 [𝑙𝑎𝑦𝑒𝑟 ], 𝜽 [𝑙𝑎𝑦𝑒𝑟 ]⟩/∥𝜽𝑖 [𝑙𝑎𝑦𝑒𝑟 ] ∥∥𝜽 [𝑙𝑎𝑦𝑒𝑟 ]∥ ⊲ The sum of cosine similarity of each layer
5: end for
6: // Utilize the 𝑆𝑖 and historical credibility value to update the new credibility value 𝜏𝑖 .
7: 𝜏𝑖 = 𝛽 · 𝑆𝑖 + (1 − 𝛽) · 𝜏𝑖
8: Return 𝜏𝑖

3.2 Updating Weight

Initially, the preference of the proposed scheme is to assign uniform weights 𝑤𝑖 to all clients in order to prevent
inadvertent misclassification of malicious clients. Subsequent to this initial phase, our aim is to identify malicious
clients through their credibility values 𝜏𝑖 and significantly reduce their weights 𝑤𝑖 during training to protect the
global model 𝜽 . In pursuit of this objective, we introduced the equilibrium factor 𝛼 , which is calculated based on a
variant sigmoid function (2). In our weight formula (3), we utilized it to dynamically modulate the significance of both
the credibility value 𝜏𝑖 and the average value within the weights𝑤𝑖 . The comprehensive weight calculation procedure
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is illustrated in Algorithm 3.
𝛼 =

(
1 + 𝑒 (−(𝑅+𝛼1 )/𝛼2 )

)−1
(2)

𝑤𝑖 =
1
𝑛
· (1 − 𝛼) + 𝜏𝑖∑𝑛

𝑗=1 𝜏 𝑗
· 𝛼 (3)

Algorithm 3 getWeight
Input: Credibility value 𝜏𝑖 ; number of training rounds 𝑅; hyperparameters 𝛼1, 𝛼2.
Output: The weight of 𝑖th client𝑤𝑖 .
1: // Compute the equilibrium factor 𝛼 by the variant sigmoid function.
2: 𝛼 =

(
1 + 𝑒 (−(𝑅+𝛼1 )/𝛼2 )

)−1
3: // Update the weight𝑤𝑖

4: 𝑤𝑖 = 1
𝑛 · (1 − 𝛼) +

𝜏𝑖∑𝑛
𝑗=1 𝜏 𝑗

· 𝛼
5: Return𝑤𝑖

4 EXPERIMENT RESULT

4.1 Experiment Setup

Our experimental platform comprises the AMD EPYC 7742 64-Core Processor and the NVIDIA Tesla A100 40G com-
puting accelerator. We conducted a comparative analysis of our approach, Fed-Credit, with several existing methods
including FedAvg [4], GeoMed [16], Krum [14], Median [15], Multi-Krum [14], Trimmed [15], and FLTrust [19]. This
evaluation was carried out on the MNIST and CIFAR-10 datasets, considering varying numbers of attackers as well as
both iid and Non-iid data distribution settings. For MNIST, we choose a Multi-Layer Perceptron (MLP) network with
two hidden layers and one output layer to train the global model. For CIFAR-10, We opt for a lightweight model called
Compact Convolutional Transformers (CCT) [30], as its small size and effectiveness offer better potential in addressing
the resource constraints of onboard FL devices. We utilized Dirichlet distribution to model Non-iid distribution [31].
The hyperparameter settings of this work are shown in Table 2.

MNIST: The MNIST dataset is a well-known collection of handwritten digits widely used in the field of machine
learning. It consists of 60,000 training examples and 10,000 testing examples. Each image is a 28x28 grayscale image of
a digit, ranging from 0 to 9. The MNIST dataset serves as a benchmark for evaluating image classification algorithms
and has played a crucial role in advancing the field of deep learning.

CIFAR-10:TheCIFAR-10 dataset is a popular benchmark dataset in the field of computer vision. It consists of 60,000
color images, each of size 32x32 pixels, divided into 10 different classes. The dataset serves as a standard evaluation
tool for image classification algorithms and has played a significant role in advancing the field of deep learning.

Attack types: In our experiments, we mainly use two attack methods, data poisoning attacks and model poisoning
attacks. Among the data poisoning attacks, we select the label flipping attack based on pairwise (PW) and symmetric
(SM) matrices. As for model poisoning attacks, we have chosen three different implementations. Specifically, Constant
Parameter (CP), where all model parameters are identical; Normal Parameter (NP), where returned model parameters
follow a normal distribution; and Sign-Flip Parameter (SF), which returns a model with parameters opposite to those
obtained during training.
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Parameter Description Value
𝑛 Number of clients 10

𝑓 Number of malicious clients
Model
Poison 1, 2, 3

Data
Poison 1, 2, 4

𝜂 Learning rate 0.01

𝐵 Batch size MNIST 64
CIFAR-10 32

𝑅 Number of global training epochs 100

𝐸 Number of local training epochs MNIST 5
CIFAR-10 2

𝛼1
Hyperparameters of Fed-Credit

1
𝛼2 0.8
𝛽 0.1

Table 2. Hyperparameters settings

Evaluation: To evaluate the multiple defense model, as many other works [32] [29] [33], we adopted the accuracy
as a criterion. The accuracy is employed to judge which represents the proportion of correctly classified samples to the
total number of samples in the test dataset and is defined in Eq. (4).

accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (4)

4.2 Numerical Analysis

Table 3 shows the accuracy of different robust aggregation rules under various attacks. We can find that Fed-Credit
performs well in many situations.

4.2.1 Impact of Number of Malicious Clients.

First of all, our results demonstrated that with the absence of attacks, Fed-Credit, GeoMed, Median, Trimmed and
FedAvg achieve relatively higher accuracy while FLTrust, Krum and Multi-Krum get lower accuracy. Especially, the
disparity is more obvious when the dataset distribution is Non-iid. For instance, from the results shown in Figure 3,
for MNIST with Non-iid distribution, the accuracy of lower three aggregation rules (FLTrust, Krum, Multi-Krum) are
72.26%, 85.30%, 93.08% which are significantly lower than other methods that are around 96%. This might be because
Krum and Multi-Krum tend to use one or few local updates to update the global model, which makes the global model
cannot fit the overall dataset well. Another finding is that the FLTrust converges slower than other methods, which is
consistent with Cao et al. [19].

As indicated by the data presented in Figure 4 Figure 5, a clear pattern emerges where an increase in the number
of malicious clients corresponds to a noticeable decline in accuracy. Additionally, it is worth noting that the FedAvg
and Trimmed algorithms appear to be sensitive to the growing proportion of malicious attackers. This sensitivity
can be attributed to the fact that both of these algorithms primarily rely on averaging methods to update the global
model. When a malicious client is involved in the computation, it holds the same weight as a benign client, thereby
contributing to a degradation in the overall model performance.
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Dataset Distribution Attack
type f Fed-credit FedAvg GeoMed Krum Multi-Krum Median Trimmed FLTrust

No attack - 0 97.61 97.63 97.81 95.64 96.33 97.64 97.59 86.85
1 97.55 90.18 97.62 95.53 96.37 97.66 97.49 86.53
2 97.36 83.09 97.34 95.56 96.32 97.50 88.34 86.58CP
3 97.07 67.38 97.17 95.17 96.29 97.04 71.97 85.79
1 97.55 91.82 97.61 94.87 96.33 97.63 97.61 85.76
2 97.42 88.39 97.39 94.93 96.43 97.49 90.55 86.37NP
3 97.22 84.48 97.31 95.20 96.44 97.27 85.34 86.96
1 97.55 88.18 97.48 95.37 96.49 97.49 97.55 86.78
2 97.28 76.42 97.47 94.53 96.45 97.53 85.27 85.22

Model
poison

SF
3 97.23 11.35 97.19 95.48 96.36 97.44 72.01 87.67
1 97.47 97.51 97.59 94.88 96.39 97.59 97.52 87.64
2 97.47 96.45 97.48 94.73 96.31 97.38 97.19 85.98PW
4 97.17 81.22 96.81 95.22 96.46 96.47 85.33 85.54
1 97.60 97.56 97.80 94.98 96.33 97.58 97.62 86.12
2 97.46 97.11 97.51 94.83 96.50 97.56 97.14 86.02

iid

Data
poison

SM
4 97.17 93.33 97.25 95.19 96.34 96.95 94.65 86.19

No attack - 0 96.18 96.43 96.23 85.30 93.08 95.52 96.12 72.26
1 95.91 70.87 95.49 69.13 93.24 94.71 94.98 70.45
2 95.76 61.95 94.79 81.06 93.23 95.29 66.76 68.84CP
3 95.19 27.31 92.71 83.88 93.16 94.15 38.47 61.70
1 95.71 78.47 95.53 74.57 92.89 94.41 95.27 67.44
2 96.29 70.93 95.49 81.07 92.16 95.24 70.84 64.10NP
3 95.84 57.87 93.57 81.51 92.94 95.00 54.09 67.38
1 95.75 67.26 95.85 76.50 93.18 95.02 95.26 67.86
2 95.90 52.29 95.57 81.41 93.26 95.84 64.41 71.58

Model
poison

SF
3 95.48 21.08 93.61 82.65 92.95 94.78 27.18 70.09
1 95.97 95.77 96.10 72.99 93.24 94.66 96.21 63.02
2 95.89 95.60 96.33 73.79 91.90 95.23 95.87 70.08PW
4 94.96 74.56 94.43 75.62 93.22 93.14 79.50 59.46
1 96.02 95.53 96.17 71.73 92.88 93.76 95.42 62.27
2 96.23 95.60 96.30 81.09 92.88 95.12 96.14 68.88

MNIST

Non-iid

Data
poison

SM
4 93.78 92.04 95.14 70.16 85.48 93.53 93.83 52.79

No attack - 0 68.34 68.99 69.41 58.20 61.09 68.08 68.72 46.91
1 69.55 44.68 69.72 56.68 60.57 68.50 69.13 46.74
2 68.16 15.04 68.02 57.72 61.62 68.25 18.50 46.77CP
3 65.97 13.78 61.97 55.79 61.82 66.43 13.90 47.59
1 69.24 58.62 68.95 56.45 62.87 67.52 69.07 46.32
2 68.62 37.45 69.02 58.17 62.90 66.70 54.96 46.87NP
3 68.60 10.00 67.93 57.11 62.12 66.02 24.88 46.04
1 69.67 37.94 68.99 57.62 62.27 67.16 69.34 46.97
2 69.13 10.00 68.24 58.49 62.22 65.59 24.65 46.24

Model
poison

SF
3 69.40 10.00 67.42 57.67 61.50 65.39 10.00 46.91
1 68.69 67.13 68.21 54.24 62.26 67.08 68.25 45.99
2 68.01 64.50 66.81 57.74 62.93 64.47 65.21 47.14PW
4 66.10 48.09 50.43 55.85 61.07 48.95 48.06 45.28
1 68.63 67.85 68.01 56.40 62.73 66.00 68.27 46.29
2 68.57 64.36 67.07 56.92 62.32 61.28 65.87 45.87

iid

Data
poison

SM
4 66.70 56.98 52.39 55.41 61.96 51.28 55.92 45.82

No attack - 0 67.68 68.64 69.14 59.09 62.45 67.84 68.87 46.84
1 69.07 44.63 68.41 56.52 61.87 68.57 69.04 47.52
2 68.57 15.22 67.84 57.05 60.97 68.68 17.42 46.58CP
3 66.42 14.36 60.55 58.98 62.01 67.37 14.08 46.56
1 68.86 59.27 69.30 59.53 61.73 67.15 69.23 47.08
2 69.11 37.71 68.49 54.37 62.52 67.18 55.22 47.77NP
3 68.65 10.00 67.08 57.39 62.56 65.98 25.47 45.83
1 69.93 37.99 69.17 58.63 61.55 67.55 68.94 46.58
2 69.38 10.00 68.94 48.99 61.84 67.43 25.64 47.54

Model
poison

SF
3 69.57 10.00 67.51 55.73 60.69 64.42 10.00 46.34
1 68.32 67.33 68.13 56.98 61.39 67.31 68.27 47.11
2 67.82 64.31 65.89 56.61 60.75 65.90 65.94 47.20PW
4 66.75 47.88 49.91 54.43 62.26 49.45 48.38 48.57
1 68.79 67.92 68.35 54.76 61.11 66.11 68.47 46.97
2 67.95 66.14 66.46 45.83 61.65 62.59 65.90 46.13

CIFAR-10

Non-iid

Data
poison

SM
4 66.49 55.10 52.59 55.21 62.30 52.10 55.88 47.48

Table 3. Experiment results overview
Constant Parameter (CP), Normal Parameter (NP), Sign Flipping (SF), Pairwise (PW), Symmetric (SM)
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Fig. 3. Accuracy without attacks of iid and Non-iid datasets
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Fig. 4. The minimum, mean, maximum accuracy of various aggregation methods with 1,2,3,4 attacker(s) on iid MNIST. Median and
Fed-Credit show high accuracy and narrow bias.

In contrast, the results also underscore the superior performance of the Fed-Credit algorithm. Notably, the Fed-
Credit algorithm consistentlymaintains higher accuracy levels and demonstrates fewer instances of extreme variability.
This fortifies the assertion that Fed-Credit adeptly preserves both accuracy and stability, even amidst the escalating
presence of adversarial entities.

4.2.2 Impact of Attack Types.
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Fig. 5. The minimum, mean, maximum accuracy of various aggregation methods with 1,2,3,4 attacker(s) on Non-iid MNIST. Fed-
Credit shows high accuracy and narrow bias.
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Fig. 6. Impact of different attack types on test accuracy for iid and Non-iid datasets. Geomed, Trimmed and Fed-Credit show higher
tolerance than other methods.

It is worth discussing the impact of different attack types on the overall accuracy of the global model. From Figure 6,
it is evident that various aggregation approaches show differing levels of effectiveness in countering a range of attack
techniques across diverse datasets with distinct distributions. Specifically, when considering the scenario with two
attackers, distinct patterns emerge.

For instance, both the FedAvg and Trimmed methods exhibit lower tolerance for Model Poison attacks (CP, NP,
SF) compared to Data Poison attacks (PW, SM). On the contrary, algorithms like Krum, Multi-Krum, and FLTrust
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demonstrate a higher degree of tolerance for multiple attack types. Importantly, these algorithms exhibit sensitivity to
only a limited number of attacks, with fluctuations that remain relatively contained compared to FedAvg and Trimmed.
The Fed-Credit, Geomed, and Median algorithms consistently perform well, effectively mitigating all types of attacks
with higher accuracy compared to alternative methods considered.

4.2.3 Impact of Data Distribution.

We conducted an assessment of the model’s performance across distinct partitioned datasets. In scenarios where the
data partition adheres to the iid principle, an equitable apportionment of each data category to every client was effected.
Conversely, in instances characterized by Non-iid data distribution, the Dirichlet Distribution (𝐺 ∼ 𝐷𝑃 (𝛼,𝐺0)) was
employed as a means to characterize the prevailing data distribution dynamics.

Prior investigations [34] [35] have previously demonstrated the influence of Non-iid datasets on the convergence
behavior of models. Our present study, Figure 4 Figure 5, confirmed this view. As the data distribution shifts from iid
to Non-iid, the vast majority of methods show a downward trend in accuracy. In line with these antecedent findings,
our own experimental endeavor reveals a supplementary facet: that adversarial attacks exhibit heightened efficacy in
instances where the underlying dataset distribution is Non-iid. Notably, among the algorithms assessed, namely Fed-
Credit, GeoMed, Krum, Multi-Krum, Median, and FLTrust, their predictive accuracy attains a comparable level to that
observed under iid dataset conditions when confronted with Non-iid dataset configurations. However, it is noteworthy
that both FedAvg and Trimmed algorithms manifest certain challenges in convergence within select scenarios. A case
in point involves the application of 3 sign-flipping attackers on the Non-iid CIFAR-10 dataset, where these algorithms
nearly regress to a state akin to random conjecture.

4.2.4 Credibility Trend.

Within our Fed-Credit algorithm, a key component that warrants attention is credibility management. This pivotal
element profoundly influences the algorithm’s operational framework. The graphical representation of credibility val-
ues across varying scenarios, employing the MNIST dataset, is concisely depicted in Figure 7. This illustration vividly
showcases the algorithm’s remarkable ability to withstand a diverse array of attacks.

A noteworthy discovery is the consistent trend of credibility values among benign clients, which converged to the
same value that is significantly higher than the credibility values that malicious clients achieved. This observation
serves as compelling evidence of the Fed-Credit algorithm’s effectiveness.

For the group of malicious clients, aside from constant parameter attacks, their credibility values exhibit fluctuations
as the number of attackers increases.This phenomenon becomes particularly pronounced when dealing with a Non-iid
distributed dataset. It is essential to highlight, however, that this observed fluctuation remains well-containedwithin an
acceptable and manageable scope. Overall, the Fed-Credit algorithm demonstrates a robust and reliable performance,
showcasing its resilience across a wide spectrum of challenges.

5 RELATEDWORK

In this section, we show the current research on poisoning attacks and aggregation rules for defending against attacks.

5.1 Poisoning Attacks

According to the poisoning attacks method, poisoning attacks can be classified into data poisoning attacks and model
poisoning attacks [36].
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In the data poisoning attack, the attackers can only inject poison into training data or labels. Therefore, we can
divide the data poisoning attack into two categories, clean label attack and dirty label attack.

Clean label attack: The untargeted attack [6] [7] is a form of model poisoning attack. In this attack, malicious
clients send arbitrary or counterfeit parameters to the central server with the aim of undermining the performance of
the global model or causing it to deviate from its intended behavior. Ali et al. [8] proposed a method that optimizes
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an equation to create a poison instance resembling a base class instance but embedded in the target class distribution.
Dazhong et al. [37] designed FedRecAttack to employ public interactions for approximating the user’s feature vector,
which an attacker can exploit to train a malicious model. However, the above methods both assume the distribution
of the dataset is iid, and if the distribution is Non-iid, the attackers cannot attack via these methods. To address this
problem, Jiale et al. [38] utilize a generative adversarial network, called PoisonGAN, to generate data similar to other
clients and execute attacks with these fake data, in which attackers could execute poisoning attacks without prior
knowledge.

Dirty lable attack: Virat et al. [39] introduced that all label flipping can be divided into static label flipping (SLF)
and dynamic label flipping (DLF). For instance, an attacker flips the label of ”7” to ”1” [12] [13] in SLF. This method has
high requirement for prior knowledgewhich is not inefficient in practical application. To improve efficiency, symmetric
flipping [10] and pairwise flipping [11] were introduced to flip each label to other labels. The attack distance-aware
attack (ADA) was proposed by Yuwei et al. [40] to enhance poisoning attacks by discovering optimal target classes in
the feature space.

Model poisoning aims to attack a global model by manipulating malicious clients’ local model parameters directly.
Li et al. [41] use the Same-value vector and Sign-flipping vector to attack the global model. Xie et al. [42] proposed
Inner ProductManipulation (IPM)which aims to create a negative inner product between the genuine updatemean and
the aggregation schemes’ output, thereby preventing any loss reduction. Wallach et al. designed ALIE to modify the
local model parameters carefully based on the assumption that benign updates are expressed by a normal distribution.
Xingchen et al. [43] proposed an optimization-based model poisoning attack, injecting malicious neurons into the
neural network’s redundant space using the regularization term. However, the primary issue with this approach was
the computational complexity of malicious clients needing to compute the Hessian matrix during attack preparation.

5.2 Defense Rules

A variety of robust aggregation rules have been proposed. In general, they can be divided into the following three
categories.

Distance-based rules aim to detect and reject abnormal local parameters which is uploaded by malicious clients.
Blanchard et al. [14] proposed Krum and Multi-Krum. Krum chooses one update which is the most closest to its neigh-
bors to update the global model, while Multi-Krum computes the mean of multiple updates to update global model.
Cao et al. [44] presented Sniper, which constructs a graph based on Euclidean distances between local parameters, to
ignore the updates from malicious clients. Wan et al. [18] designed MAB-RFL, which uses graph theory and principal
components analysis (PCA) to distinguish honest and malicious in low-dimensional model space.

In performance-based rules, every update from clients will be evaluated with a clean dataset that is stored in server,
then the server assigns weights for each update. Cao et al. [20] proposed a Byzantine-robust distributed gradient al-
gorithm that filters out information from malicious clients by computing a noisy gradient with a small clean dataset
and only accepting updates based on a pre-defined condition. Zeno [21] uses a small validation set to compute a score
for each candidate gradient, considering the estimated loss function descendant and the update magnitude, indicat-
ing reliability and performance. Cao et al. [19] introduced FLTrust, which computes weights by ReLU-clipped cosine
similarity between each local update and server update.

Statistics-based algorithms utilize statistical characteristics of updates to update the global parameters. Yin et al.

[15] proposed Median and Trimmed to exploit the median of updates or the coordinate-wise trimmed mean of local
parameters. Xie et al. [16] employed the geometric median, which requires more computational resources, to defend
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against the attacks. Mhamdi et al. [17] designed Bulyan, which combines malicious client detection algorithms, such
as Multi-Krum, and Trimmed, to filter the updates from malicious clients.

Summary: (1) Although the current research has good results in defending against some kinds of attacks, few
studies have discussed the effectiveness of aggregation rules against multiple attacks. (2) For the second category, it’s
impractical for the server to have a partially clean dataset due to privacy concerns. (3) some aggregation rules need to
know in advance how many malicious clients there are, which cannot be put into practice. (4) high time complexity
of one round of interaction for some aggregation rules.

6 CONCLUSION

In this paper, we first explored the practical use of the Federated Learning (FL) algorithm. We then proposed and eval-
uated a robust FL aggregation method named Fed-Credit. Through extensive experiments on MNIST and CIFAR-10
datasets, we compared Fed-Credit with several other algorithms. Results show that Fed-Credit maintains high accu-
racy while effectively countering a broad range of attacks. In our future work, we plan to integrate an outlier detection
algorithm at the start of Fed-Credit to mitigate extreme local updates and preserve the credibility value system. Ad-
ditionally, we aim to enhance the generality of Fed-Credit by providing clients with an initial credibility value from
previous FL tasks.
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